大秀直播v p
发布日期:2025-12-17 13:50 点击次数:173
作家提议:We recommend all users to consider using [LIANA+](https://liana-py.readthedocs.io/en/latest/index.html), instead of LIANA, due to it's increased efficiency and completeness. We plan to eventually port all LIANA+ functionalities and backend to R, but in the meantime [LIANA+ in Python](https://liana-py.readthedocs.io/en/latest/index.html) is recommended. 也便是说在2024年发布的LIANA+在功能完竣性和后果上是优化的,比如,之前的cpdb用的是v2数据库,咱们也知说念现在cpdb是v5数据库,是以这些可能齐进了更新。关联词LIANA+现在(2024年11-15)惟一python版,后续也会出R版的分析,敬请期待吧!
装配现在的R包试试吧!这里咱们强调R版,因为大多半东说念主的使用原因!
setwd("D:\\KS口头\\公众号著述\\liana单细胞通信分析框架先容")#装配和加载一些包library(Seurat)library(dplyr)library(tidyverse)remotes::install_github('saezlab/liana')library(liana)#需要提防的是,我腹地电脑用remotes::install_github很汉典且莫得告捷#是以下载装配包腹地装配,然后可能需要一些依赖包,相同的下载腹地装配即可packageVersion('liana')[1] '0.1.14’望望资源和分析措施,泰国按摩群齐挺全,常见的不常见的齐在(这里的不常见仅指我的默契)。从两个层面来说,一些python的措施历程了R的转动,不错说能在R内部出手cellphonedb了,关于不庄重python的小伙伴是很友好的!
liana::show_resources()# [1] "Default" "Consensus" "Baccin2019" "CellCall" # [5] "CellChatDB" "Cellinker" "CellPhoneDB" "CellTalkDB" # [9] "connectomeDB2020" "EMBRACE" "Guide2Pharma" "HPMR" # [13] "ICELLNET" "iTALK" "Kirouac2010" "LRdb" # [17] "Ramilowski2015" "OmniPath" "MouseConsensus" liana::show_methods()# [1] "connectome" "logfc" "natmi" "sca" "cellphonedb" # [6] "cytotalk" "call_squidpy" "call_cellchat" "call_connectome" "call_sca" # [11] "call_italk" "call_natmi"
出手下分析,提供单细胞seurat obj简略SingleCellExperiment obj即可,不错指定措施和resource。
##load dataload("C:/Users/tq199/Desktop/fsdownload/scRNA_Y16.Rdata")Idents(scRNA_Y16) <- 'celltype'##run analysisliana_test <- liana_wrap(scRNA_Y16, idents_col = 'celltype')# Expression from the `RNA` assay will be used# Running LIANA with `celltype` as labels!# LIANA: LR summary stats calculated!# Now Running: Natmi# Now Running: Connectome# Now Running: Logfc# Now Running: Sca# Now Running: Cellphonedb# |============================================================== |100% ~0 s remaining liana_test <- liana_test %>%liana_aggregate(aggregate_how = "magnitude")#====================================================================================liana_cpdb <- liana_wrap(scRNA_Y16, idents_col = 'celltype', method = "cellphonedb",resource = c('CellPhoneDB'))liana_cpdb_sig <- liana_cpdb[liana_cpdb$pvalue <= 0.05,]liana_cpdb_sig$inter <- paste0(liana_cpdb_sig$source,"_",liana_cpdb_sig$target)table(liana_cpdb_sig$inter)图片大秀直播v p
可视化就很通俗了:
#可视化library(ggplot2)library(RColorBrewer)ggplot(liana_cpdb_sig,aes(inter,LRpairs))+ geom_point(aes(size= -log10(pvalue+0.00001), color=lr.mean))+ geom_point(aes(size= -log10(pvalue+0.00001)), shape=21,stroke=1)+ theme(axis.text.x = element_text(angle = 90, hjust = 1))+ scale_color_gradientn(colours = RColorBrewer::brewer.pal(n = 10, name = "Spectral"))
图片
本站仅提供存储劳动,通盘实质均由用户发布,如发现存害或侵权实质,请点击举报。