泰国按摩群

离职人员群曝光

发布日期:2025-12-17 13:36    点击次数:50

hdWGCNA与WGNCA分析的关键点很访佛,主要有以下几点:

构建无标度网络,识别关键模块基因。这里的无标度网络就像是社会中的东谈主与东谈主之间网络干系,大多量东谈主之间的干系是正常的,但有少部分的东谈主具有很强的"引力",与他们相连在沿途的有一大帮子东谈主。这里的少部分东谈主在WGCNA中就相当于是关键模块基因,口角常伏击的节点,淌若莫得了这个节点这个网络就可能会“瘫痪”。在构建这个无标度网络的期间采取了加权共抒发的容貌,何况由界说的软阈值去估量加权网络。加权共抒发的容貌颠倒好相识,比如东谈主与东谈主之间的交流确信存在一定的强弱干系,不会仅仅好与不好的正反两种情况。软阈值的作用是为了更好的放大大约收缩不同节点之间的有关本性况,从而减少在未使用软阈值情况下节点因为稍未达到阈值而被觉得“不伏击”的情况发生。hdWGCNA分析经由1.导入
rm(list = ls())library(WGCNA)library(hdWGCNA)library(tidyverse)library(cowplot)library(patchwork)library(qs)library(Seurat)set.seed(12345)#enableWGCNAThreads(nThreads = 8)#这里加载的是seurat对象,替换我方的数据即可scRNA <- qread("./9-CD4+T/CD4+t_final.qs")#查验一下我方导入进来的数据Idents(scRNA) <- "celltype"DimPlot(scRNA,reduction = 'umap',        label = TRUE,pt.size = 0.5) +NoLegend()

图片

2.为WGCNA建筑Seurat对象WGCNA分析的期间会把信息储存在seurat对象的@misc槽中;variable: 使用存储在Seurat对象的VariableFeatures中的基因;fraction: 使用在通盘数据集或每组细胞中抒发的基因,由 group.by 指定;custom: 使用在Custom 列表中指定的基因;一个seurat对象不错包含多个hdWGCNA实验对象;
# V5版块需要这行代码,V4不需要scRNA <- SeuratObject::UpdateSeuratObject(scRNA)seurat_obj <- SetupForWGCNA(  scRNA,  gene_select = "fraction", # 默许fraction;其他有variable(Seurat对象中存储的基因),custom(自界说)  fraction = 0.05, # fraction of cells that a gene needs to be expressed in order to be included  wgcna_name = "CD4+T" # the name of the hdWGCNA experiment)
3.构建metacells

metacells是由来自兼并个生物样本的、相似细胞构成的小群体团员而成的。该过程使用k最邻近(k-Nearest Neighbors, KNN)算法来识别相似细胞的群体,然后估量这些细胞的平均或总抒发量,从而生成一个metacell基因抒发矩阵。与原始抒发矩阵比拟,metacell抒发矩阵的寥落性大大裁汰,更妥当用于后续分析。

# 各组构建metacellseurat_obj <- MetacellsByGroups(  seurat_obj = seurat_obj,  group.by = c("celltype", "orig.ident"), #指定seurat_obj@meta.data中要分组的列  reduction = 'harmony', # 取舍要履行KNN的降维  k = 25, # 最邻近居参数  max_shared = 10, # 两个metacell之间分享细胞的最大数量  ident.group = 'celltype', # 建筑metacell安全对象的标志  min_cells = 100 # 甩掉数量小于100的细胞亚群)# normalize metacell expression matrix:seurat_obj <- NormalizeMetacells(seurat_obj)
4.共抒发网络分析

建筑抒发式矩阵,使用hdWGCNA对方向细胞亚群进行共抒发网络分析

seurat_obj <- SetDatExpr(  seurat_obj,  group_name = "Treg", # the name of the group of interest in the group.by column  group.by='celltype', # the metadata column containing the cell type info. This same column should have also been used in MetacellsByGroups  assay = 'RNA', # using RNA assay  slot = 'data' # using normalized data)# # 取舍多个group_names# seurat_obj <- SetDatExpr(#   seurat_obj,#   group_name = c("Treg", "Tm"),#   group.by='celltype'# )
4.1 取舍软阈值
# Test different soft powers:seurat_obj <- TestSoftPowers(  seurat_obj,  powers = c(seq(1, 10, by = 1), seq(12, 30, by = 2)),  networkType = 'unsigned'# you can also use "unsigned" or "signed hybrid")# plot the results:plot_list <- PlotSoftPowers(seurat_obj)# 1     1 0.4193109 -2.829398      0.9708088 551.0532441 532.1816874 1079.59624# 2     2 0.7722457 -2.846229      0.9935455  90.8116702  80.0299812  331.23789# 3     3 0.8469701 -2.813601      0.9812133  19.9509707  15.0395890  127.98068# 4     4 0.8914758 -2.532259      0.9884110   5.4419966   3.2775043   57.54649# 5     5 0.9024030 -2.199419      0.9834531   1.7820619   0.7925626   28.86319# 6     6 0.9511793 -1.813044      0.9753076   0.6868952   0.2083341   15.72666# assemble with patchworkwrap_plots(plot_list, ncol=2)# check以下数据power_table <- GetPowerTable(seurat_obj)head(power_table)#   Power   SFT.R.sq     slope truncated.R.sq   mean.k. median.k.    max.k.# 1     1 0.02536182  3.273051      0.9541434 4370.9149 4379.0629 4736.8927# 2     2 0.11091306 -3.571441      0.8008960 2322.5480 2286.2454 2871.2953# 3     3 0.50454728 -4.960822      0.8035027 1286.6453 1241.8414 1898.5501# 4     4 0.79569568 -4.812735      0.9183803  740.0525  697.1193 1338.0185# 5     5 0.86641323 -4.110731      0.9517671  440.6141  402.5530  985.0984# 6     6 0.88593187 -3.582879      0.9624951  270.9020  237.8831  750.2825

WGCNA和hdWGCNA的一般原则是取舍使法度解放拓扑模子拟合度(Scale Free Topology Model Fit)大于或等于0.8的最低软阈值(soft power threshold)。在构建网络时,淌若用户莫得提供软阈值,门径会自动取舍一个软阈值。

图片

4.2 构建共抒发网络
# 淌若莫得指定软阈值,construcNetwork会自动指定软阈值# construct co-expression network:seurat_obj <- ConstructNetwork(  seurat_obj,  soft_power = 4, # 自界说了4,淌若是自动取舍的话可能会是3  tom_outdir = "TOM",  tom_name = 'Treg', # name of the topoligical overlap matrix written to disk  overwrite_tom = TRUE# 允许粉饰已存在的同名文献)# 可视化WGCNA树状图# “灰色”模块由那些未被归入任何共抒发模块的基因构成。关于总计卑劣分析和讲明注解,应忽略灰色模块。PlotDendrogram(seurat_obj, main='Treg hdWGCNA Dendrogram')# 可选:查验拓扑重迭矩阵(topoligcal overlap matrix,TOM)# TOM <- GetTOM(seurat_obj)# TOM

图片

4.3 估量模块特征基因

模块特征基因(Module Eigengenes,MEs)是用于转头通盘共抒发模块基因抒发谱的常用打算。模块特征基因是通过在每个模块的基因抒发矩阵子集上履行主身分(PCA)分析来估量的。这些PCA矩阵的第一个主身分即是MEs。此外对MEs愚弄Harmony批量革命,泰国按摩群从而得到harmony后的模块特征基因(hMEs)。

# 需要先动手ScaleData,不然harmony会报错:# seurat_obj <- ScaleData(seurat_obj, features=VariableFeatures(seurat_obj))# 估量完满单细胞数据麇集的总计MEsseurat_obj <- ModuleEigengenes( seurat_obj, group.by.vars="orig.ident")# 互助模特征基因:# 允许用户对MEs愚弄Harmony批量革命,生成互助模块特征基因(hMEs)hMEs <- GetMEs(seurat_obj)# module eigengenes:#MEs <- GetMEs(seurat_obj, harmonized=FALSE)
4.4估量模块勾搭性

在共抒发网络分析中,时时但愿关怀“重要基因”,即在每个模块内高度勾搭的基因。因此,但愿细目每个基因的基于特征基因(eigengene)的勾搭性,也称为kME。hdWGCNA提供了ModuleConnectivity 函数,用于在完满的单细胞数据集(而不是metacell数据集)上钩算基因的kME值。这个函数本色上是估量基因与模块特征基因之间的成对有关性。天然不错在通盘数据麇集估量总计细胞的kME,但冷落在之前用于动手ConstructNetwork的细胞类型或分组上钩算kME,这里取舍了Treg细胞。

# 估量基于特征基因的勾搭性(kME):# 关怀重要基因seurat_obj <- ModuleConnectivity(  seurat_obj,  group.by = 'celltype',   group_name = 'Treg')# 模块重定名seurat_obj <- ResetModuleNames(  seurat_obj,  new_name = "Treg_NEW")# 绘画每个模块按kME排序的基因p <- PlotKMEs(seurat_obj, ncol=4)p

图片

4.5得回模块里面信息
# 得回模块里面信息:# 个东谈主觉得这一部分很关键,毕竟我们即是思要得到不同模块的基因# 这一步去除了不需要的灰色模块基因modules <- GetModules(seurat_obj) %>%   subset(module != 'grey')# 长远前六列:head(modules[,1:6])#          gene_name    module     color   kME_grey kME_Treg_NEW1 kME_Treg_NEW2# ISG15        ISG15 Treg_NEW1 turquoise 0.09485063    0.31618006     0.2177907# TNFRSF18  TNFRSF18 Treg_NEW1 turquoise 0.12119087    0.39886246     0.4605542# TNFRSF4    TNFRSF4 Treg_NEW1 turquoise 0.08844463    0.35922337     0.3728684# SDF4          SDF4 Treg_NEW2     black 0.11518097    0.11212155     0.1883993# B3GALT6    B3GALT6 Treg_NEW3    purple 0.03314139    0.08610811     0.1067775# AURKAIP1  AURKAIP1 Treg_NEW1 turquoise 0.09062613    0.26244827     0.1252306# 得到重要基因# 不错提真金不怕火按kME排序的前N个重要基因的表格,这里取舍了10hub_df <- GetHubGenes(seurat_obj, n_hubs = 10)head(hub_df)#   gene_name    module       kME# 1     GAPDH Treg_NEW1 0.6160237# 2    S100A4 Treg_NEW1 0.5886924# 3      MYL6 Treg_NEW1 0.5558792# 4    TMSB10 Treg_NEW1 0.5371290# 5      IL32 Treg_NEW1 0.5161320# 6    ARPC1B Treg_NEW1 0.5138853# 保存数据qsave(seurat_obj, 'hdWGCNA_object.qs')
4.6估量hub基因siganture得分
# 估量每个模块前25个重要基因的kME得分# 使用UCell步伐library(UCell)seurat_obj <- ModuleExprScore(  seurat_obj,  n_genes = 25,  method='UCell' # Seurat步伐(AddModuleScore))
5.可视化

模块特征图

# 每个模块制作hMEs的特征图plot_list <- ModuleFeaturePlot(  seurat_obj,  features='hMEs', # plot the hMEs  order=TRUE # order so the points with highest hMEs are on top)# stitch together with patchworkwrap_plots(plot_list, ncol=4)

特征图是常用的可视化步伐,不错径直在降维空间中展示感兴味的特色。hdWGCNA包含一个ModuleFeaturePlot函数,用于为每个共抒发模块构建特征图,并以每个模块独一分派的心绪进行着色。

图片

调换函数绘画hub基因特征得分
# 每个模块制作hub scores的特征图plot_list <- ModuleFeaturePlot(  seurat_obj,  features='scores', # plot the hub gene scores  order='shuffle', # order so cells are shuffled  ucell = TRUE # depending on Seurat vs UCell for gene scoring)# stitch together with patchworkwrap_plots(plot_list, ncol=4)

跟上头的成果比拟hub基因愈加均匀踱步在细胞中

图片

每个模块在不同细胞亚群中的情况
# 每个模块在不雷同本中的情况seurat_obj$cluster <- do.call(rbind, strsplit(as.character(seurat_obj$orig.ident), ' '))[,1]ModuleRadarPlot(  seurat_obj,  group.by = 'cluster',  barcodes = seurat_obj@meta.data %>%     subset(celltype == 'Treg') %>%     rownames(),  axis.label.size=4,  grid.label.size=4)

图片

有关性分析
# 检察模块有关图ModuleCorrelogram(seurat_obj)

图片

气泡图
# get hMEs from seurat objectMEs <- GetMEs(seurat_obj, harmonized=TRUE)modules <- GetModules(seurat_obj)mods <- levels(modules$module); mods <- mods[mods != 'grey']# add hMEs to Seurat meta-data:seurat_obj@meta.data <- cbind(seurat_obj@meta.data, MEs)# plot with Seurat's DotPlot functionp <- DotPlot(seurat_obj, features=mods, group.by = 'celltype')# flip the x/y axes, rotate the axis labels, and change color scheme:p <- p +  RotatedAxis() +  scale_color_gradient2(high='red', mid='grey95', low='blue')# plot outputp

图片

单模块的网络图
# 使用ModuleNetworkPlot可视化每个模块前50(数值可自定)的hub geneModuleNetworkPlot(    seurat_obj,     outdir='ModuleNetworks', # new folder name    n_inner = 20, # number of genes in inner ring    n_outer = 30, # number of genes in outer ring    n_conns = Inf, # show all of the connections    plot_size=c(10,10), # larger plotting area    vertex.label.cex=1 # font size)

会导出一个文献,文献中有每个模块前50的重要基因

图片

结合hub基因的网络图
options(future.globals.maxSize = 5 * 1024^3)  # 5GB# hubgene network(基因数可自定)HubGeneNetworkPlot(  seurat_obj,  n_hubs = 2,   n_other=2,  edge_prop = 0.75,  mods = 'all')# 不错取舍模块数g <- HubGeneNetworkPlot(seurat_obj,  return_graph=TRUE)# get the list of modules:modules <- GetModules(seurat_obj)mods <- levels(modules$module); mods <- mods[mods != 'grey']# hubgene networkHubGeneNetworkPlot(  seurat_obj,  n_hubs = 2,   n_other= 2,  edge_prop = 0.75,  mods = mods[1:5] # only select 5 modules)

使用HubGeneNetworkPlot函数将总计模块合并在沿途制作网络图,此函数不错制定展示特定数量的中心基因和其他基因。

图片

不错减少模块的数量

图片

UMAP共抒发网络
seurat_obj <- RunModuleUMAP(  seurat_obj,  n_hubs = 10, # number of hub genes to include for the UMAP embedding  n_neighbors=15, # neighbors parameter for UMAP  min_dist=0.1# min distance between points in UMAP space)# get the hub gene UMAP table from the seurat objectumap_df <- GetModuleUMAP(seurat_obj)# plot with ggplotggplot(umap_df, aes(x=UMAP1, y=UMAP2)) +  geom_point(   color=umap_df$color, # color each point by WGCNA module   size=umap_df$kME*2# size of each point based on intramodular connectivity  ) +  umap_theme()ModuleUMAPPlot(  seurat_obj,  edge.alpha=0.25,  sample_edges=TRUE,  edge_prop=0.1, # proportion of edges to sample (20% here)  label_hubs=2 ,# how many hub genes to plot per module?  keep_grey_edges=FALSE)

上头分析愈加侧重重要基因和模块的可视化,而这个方规则把UMAP愚弄到了hdWGCNA采会聚使得图形愈加好意思不雅。

图片

此外,hdWGCNA还提供了更多丰富的可视化教程,其他部分不错点击参考贵府中的相连自行检察。6.富集分析
library(Seurat)library(tidyverse)library(cowplot)library(patchwork)library(WGCNA)library(hdWGCNA)library(enrichR)library(GeneOverlap)library(qs)#dir.create("14-hdWGCNA")#setwd("14-hdWGCNA")seurat_obj <- qread("hdWGCNA_object.qs")# 界说enrichr databasesdbs <- c('GO_Biological_Process_2023',         'GO_Cellular_Component_2023',         'GO_Molecular_Function_2023')# 富集分析seurat_obj <- RunEnrichr(  seurat_obj,  dbs=dbs,  max_genes = 100# use max_genes = Inf to choose all genes)# 检索输出表enrich_df <- GetEnrichrTable(seurat_obj)# 检察成果head(enrich_df)# make GO term plots:EnrichrBarPlot(  seurat_obj,  outdir = "enrichr_plots", # name of output directory  n_terms = 10, # number of enriched terms to show (sometimes more are shown if there are ties)  plot_size = c(5,7), # width, height of the output .pdfs  logscale=TRUE# do you want to show the enrichment as a log scale?)# enrichr dotplotEnrichrDotPlot(  seurat_obj,  mods = "all", # use all modules (default)  database = "GO_Biological_Process_2023", # this must match one of the dbs used previously  n_terms=2, # number of terms per module  term_size=8, # font size for the terms  p_adj = FALSE# show the p-val or adjusted p-val?)  + scale_color_stepsn(colors=rev(viridis::magma(256)))

会输出一个文献夹,里面有好多成果

图片

图片

GSEA

https://maayanlab.cloud/Enrichr/#libraries 下载数据

library(fgsea)# load the GO Biological Pathways file (downloaded from EnrichR website)pathways <- fgsea::gmtPathways('GO_Biological_Process_2023.txt')# optionally, remove the GO term ID from the pathway names to make the downstream plots look cleanernames(pathways) <- stringr::str_replace(names(pathways), " \\s*\\([^\\)]+\\)", "")# get the modules table and remove grey genesmodules <- GetModules(seurat_obj) %>% subset(module != 'grey')# rank by Treg_NEW1 genes only by kMEcur_mod <- 'Treg_NEW1'modules <- GetModules(seurat_obj) %>% subset(module == cur_mod)cur_genes <- modules[,(c('gene_name', 'module', paste0('kME_', cur_mod)))]ranks <- cur_genes$kME; names(ranks) <- cur_genes$gene_nameranks <- ranks[order(ranks)]# run fgsea to compute enrichmentsgsea_df2 <- fgsea::fgsea(  pathways = pathways,   stats = ranks,  minSize = 3,  maxSize = 500)# 可视化top_pathways <- gsea_df2 %>%     subset(pval < 0.05) %>%     slice_max(order_by=NES, n=25) %>%     .$pathwayplotGseaTable(    pathways[top_pathways],     ranks,     gsea_df2,     gseaParam=0.5,    colwidths = c(10, 4, 1, 1, 1))# name of the pathway to plot selected_pathway <- 'Cellular Respiration'plotEnrichment(    pathways[[selected_pathway]],    ranks) + labs(title=selected_pathway)

这里是取舍了特定模块的基因进行的分析

图片

7.转录因子分析
library(Seurat)library(tidyverse)library(cowplot)library(patchwork)library(magrittr)library(WGCNA)library(hdWGCNA)library(igraph)library(JASPAR2020)library(JASPAR2024)library(motifmatchr)library(TFBSTools)library(EnsDb.Hsapiens.v86)library(BSgenome.Hsapiens.UCSC.hg38)library(GenomicRanges)library(xgboost)library(JASPAR2024)library(RSQLite)library(EnsDb.Hsapiens.v86)library(qs)#dir.create("14-hdWGCNA")#setwd("14-hdWGCNA")seurat_obj <- qread("hdWGCNA_object.qs")# JASPAR 2020pfm_core <- TFBSTools::getMatrixSet(  x = JASPAR2020,  opts = list(collection = "CORE",               tax_group = 'vertebrates',               all_versions = FALSE))# JASPAR 2024 (not used for this tutorial)# JASPAR2024 <- JASPAR2024()# sq24 <- RSQLite::dbConnect(RSQLite::SQLite(), db(JASPAR2024))# pfm_core <- TFBSTools::getMatrixSet(#   x = sq24,#   opts = list(collection = "CORE", tax_group = 'vertebrates', all_versions = FALSE)# )# 进行motif分析seurat_obj <- MotifScan(  seurat_obj,  species_genome = 'hg38',  pfm = pfm_core,  EnsDb = EnsDb.Hsapiens.v86)# 得回motif df:motif_df <- GetMotifs(seurat_obj)# 保留总计TFs, 并去除灰色模块基因tf_genes <- unique(motif_df$gene_name)modules <- GetModules(seurat_obj)nongrey_genes <- subset(modules, module != 'grey') %>% .$gene_namegenes_use <- c(tf_genes, nongrey_genes)# update the gene list and re-run SetDatExprseurat_obj <- SetWGCNAGenes(seurat_obj, genes_use)seurat_obj <- SetDatExpr(seurat_obj, group.by = 'celltype', group_name='Treg')# define model params:model_params <- list(    objective = 'reg:squarederror',    max_depth = 1,    eta = 0.1,    nthread=16,    alpha=0.5)# 构建转录因子网络seurat_obj <- ConstructTFNetwork(seurat_obj, model_params)results <- GetTFNetwork(seurat_obj)head(results)#        tf  gene       Gain      Cover  Frequency         Cor# 1 ZKSCAN1 FOXD1 0.11708119 0.04695019 0.04695019 -0.19391353# 2   NFIL3 FOXD1 0.10931756 0.05379589 0.05379589  0.19738680# 3  ZNF652 FOXD1 0.09789632 0.07897635 0.07897635 -0.17072678# 4   NR4A1 FOXD1 0.09624640 0.04498028 0.04498028  0.18091337# 5   ZNF24 FOXD1 0.05250378 0.02255133 0.02255133 -0.09566174# 6   NFKB2 FOXD1 0.05148296 0.06481095 0.06481095  0.16717336# 战术“A”为每个基因取舍前10个TF# 战术“B”取舍每个转录因子的顶级基因# 战术“C”保留总计高于一定调控分数的TF-基因对seurat_obj <- AssignTFRegulons(    seurat_obj,    strategy = "A", # 还有B和C战术    reg_thresh = 0.01,    n_tfs = 10)# 可视化# 凭证基因抒发分为与TF正有关(右侧)或负有关(左侧)的方向基因p1 <- RegulonBarPlot(seurat_obj, selected_tf='ZNF652')p2 <- RegulonBarPlot(seurat_obj, selected_tf='NFKB2', cutoff=0.15)p1 | p2

不错探索与转录因子有关的不同卑劣靶基因。

图片

得回正/负共抒发的TF-基因对
# 正向regulonsseurat_obj <- RegulonScores(    seurat_obj,    target_type = 'positive',    ncores=8)# 负向regulonsseurat_obj <- RegulonScores(    seurat_obj,    target_type = 'negative',    cor_thresh = -0.05,    ncores=8)# 得回数据成果:pos_regulon_scores <- GetRegulonScores(seurat_obj, target_type='positive')neg_regulon_scores <- GetRegulonScores(seurat_obj, target_type='negative')# 取舍感兴味的TFcur_tf <- 'FOXP3'# 把regulon分数添加到Seurat metadataseurat_obj$pos_regulon_score <- pos_regulon_scores[,cur_tf]seurat_obj$neg_regulon_score <- neg_regulon_scores[,cur_tf]# plot using FeaturePlotp1 <- FeaturePlot(seurat_obj, feature=cur_tf) + umap_theme()p2 <- FeaturePlot(seurat_obj, feature='pos_regulon_score', cols=c('lightgrey', 'red')) + umap_theme()p3 <- FeaturePlot(seurat_obj, feature='neg_regulon_score', cols=c('lightgrey', 'seagreen')) + umap_theme()p1 | p2 | p3

FOXP3主要在Treg细胞中抒发,其正有关得分在Treg细胞中也推崇为较高的抒发水平。

图片

TFNetworkPlot

需要较高建树电脑智商绘画该图

# select TF of interestcur_tf <- 'FOXP3'# plot with default settingsp <- TFNetworkPlot(seurat_obj, selected_tfs=cur_tf)p# plot the FOXP3 network with primary, secondary, and tertiary targetsp1 <- TFNetworkPlot(seurat_obj, selected_tfs=cur_tf, depth=1, no_labels=TRUE)p2 <- TFNetworkPlot(seurat_obj, selected_tfs=cur_tf, depth=2, no_labels=TRUE)p3 <- TFNetworkPlot(seurat_obj, selected_tfs=cur_tf, depth=3, no_labels=TRUE)p1 | p2 | p3

此外,若数据中含有好多临床信息不错进行模块-性状有关性分析,也不错进行PPI网络分析。

本次分析完成了hdWGCNA的完满践诺经由。基于hdWGCNA分析离职人员群曝光,守护者不错识别与感兴味细胞亚群有关的模块基因,并进一步围绕这些模块基因开展富集分析、转录因子分析等多种卑劣探索。

参考贵府:hdWGCNA identifies co-expression networks in high-dimensional transcriptomics data. Cell Rep Methods. 2023 Jun 12;3(6):100498.hdWGCNA:https://smorabit.github.io/hdWGCNA/hdWGCNA的Network可视化经由:https://smorabit.github.io/hdWGCNA/articles/network_visualizations.htmlhdWGCNA的其他可视化经由:https://smorabit.github.io/hdWGCNA/articles/hdWGCNA.html生信期间树:https://mp.weixin.qq.com/s/OBvS0I7IUuwcChGoaJVgtQ https://mp.weixin.qq.com/s/3w2e6LwRowMsm2ZzyMAvdA生信菜鸟团:https://mp.weixin.qq.com/s/pLIGZhopfi-NCNtSuvwOBg生信星球:https://mp.weixin.qq.com/s/VlACgl6xlQ9YON4153Rp9g生信小白要知谈:https://mp.weixin.qq.com/s/fCvLizKQNWDQKeWBuSG3UQ 本站仅提供存储做事,总计内容均由用户发布,如发现存害或侵权内容,请点击举报。




Powered by 泰国按摩群 @2013-2022 RSS地图 HTML地图

Copyright Powered by365站群 © 2013-2025